Contents Previous Next Subchapters Current Chapters-> dft idft fft ifft dbldft idbldft lombft fft2d ifft2d dft2d idft2d fftshift Parent Chapters-> Omatrix6 filtering fourier ifft2d Search Tools-> contents reference index search

Two Dimensional Inverse Fourier Transform
 Syntax `ifft2d(`z`)` See Also fft2d , ifft

Description
Returns the complex two-dimensional centered inverse Fourier transform of z, where z is an integer, real, double-precision or complex matrix with an even number of rows and columns. If `M` is the number of rows in z and `N` is the number of columns in z, the (i,j)-th element of the return value is equal to ```   M      N -----  -----          {        __ [ (i - M/2 - 1) (m - M/2 - 1) / M ] } >      >      z    exp{ 2 pi \/-1 [              +                  ] } -----  -----   m,n    {           [ (j - N/2 - 1) (n - N/2 - 1) / N ] } m = 1  n = 1 ```The return value has the same type and dimension as z. If the only prime factors of `M` and `N` are 2, 3, 5, and 7, the transform is done in order `(M)(N)[log(N) + log(M)]` operations; otherwise the transform is done in order `(M)(N)(N + M)` operations.

Example
In the following example `M` is 4, `N` is 2, and the (4,1)-th and (4,2)-th elements of `z` are one (the rest of the elements of `z` are zero). The (i,j)-th element of the transform is therefore equal to ```            __                                           __  exp{2 pi \/-1 [(i - 3) / 4 - (j - 2) / 2]} + exp[2 pi \/-1 (i - 3) / 4] ```If you enter ```      z = [{0, 0, 0, 1}, {0, 0, 0, 1}]      ifft2d(z) ``` O-Matrix replies ```      {      [ (0,0) , (-2,0) ]      [ (0,0) , (0,-2) ]      [ (0,0) , (2,0) ]      [ (0,0) , (0,2) ]      } ``` Due to numerical limitations, some of the zeros may be output as numbers that are nearly 0.