Contents Previous Next Subchapters Current Chapters-> fourier kalman_bucy filter mlmode_filter arcov fspec dpss wavelet iwavelet fnbut fncheb fnbpole fncpole fn2cbp fn2clp fc2dig fn2dbp fn2dlp Parent Chapters-> Omatrix6 filtering iwavelet Search Tools-> contents reference index search

Inverse Wavelet Transform
 Syntax `iwavelet(`m`, `y`)` See Also wavelet , dft

Description
Returns the inverse of the wavelet transform of y, where y is a real, double-precision or complex column vector with length equal to a power of 2. The integer scalar m specifies the number of wavelet coefficients. The forward wavelet transform is an invertible mapping; in fact, it is an orthogonal mapping (a linear mapping that maps vectors to vectors with the same norm). This function is the inverse mapping of the forward wavelet transform; that is, if `y = wavelet(m, x)` and `z = iwavelet(m, y)` it follows that z is equal to x.

Example
If you enter ```      x = real(seq(8))      y = wavelet(4, x)      z = iwavelet(4, y)      print z' ``` O-Matrix will respond ```      [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ] ```