Contents Previous Next Subchapters Current Chapters-> pol2asc polval polyval polyvalm poladd polmul polcomp polder zero2pol roots poly pol2zero polcheb polyreduce mlmode_conv deconv residue compan monomial Parent Chapters-> Omatrix6 polynomial monomial Search Tools-> contents reference index search

Evaluating A Multiple Dimension Monomial And Its Derivatives
 Syntax `monomial(`n`, `k`, `p`)` See Also polval , polder

Description
Returns the derivative specified by k, of the multiple dimensional monomial specified by n, at the point specified by p. The return value is a column vector with the same type and row dimension as the integer, real, double-precision or complex matrix p. The j-th element of the return value is the derivative evaluated at the j-th row of p. The integer row vectors k and n have the same column dimension as p. ``` ```The monomial is defined by ```              n(1)   n(2)           n(N)      m(x) = x    * x   *  . . . * x              1      2              N ```where `N` is the length of the vector n. The vector k specifies the derivative ```         k(1)     k(2)            k(N)        d        d               d      -------  -------  . . .  -------  m(x)         k(1)     k(2)            k(N)      d x      d x             d x       ```Hence, if all the elements of k are zero, the derivative is equal to `m(x)`.

Example
Define the monomial ```                2     3      m(x)  =  x  *  x                 1     2 ```The value of `m(x)` at the point [1, 2] is 8. We compute this value as follows ```      n = [2, 3]      k = [0, 0]      p = [1, 2]      monomial(n, k, p) ``` The partial of `m(x)` with respect to the second component of `x` at the point [1, 2] is 12. This can be computed by continuing the previous example with ```      k = [0, 1]      monomial(n, k, p) ```