Contents Previous Next Subchapters Current Chapters-> kron inv trace det logdet rank cond null orth pinv cholesky lu svd qr qred eigen geneig eigsym symeig schur levinson tridiag BlockTriDiag Parent Chapters-> Omatrix6 linear null Search Tools-> contents reference index search

Orthogonal Basis for Null Space of a Matrix
 Syntax y` = null(`x`)` See Also null , svd

Description
Computes an orthogonal basis for the null space of the integer, real, double-precision or complex matrix x. Thus `x * y` is numerically near zero. ``` ```If x is an integer matrix, y is double-precision. Otherwise y has the same type as x. The number of rows in y is equal to the number of columns in x and the number of columns in y is equal to the dimension of the null space of x. Each of the columns of the matrix y has norm one and the columns are orthogonal; i.e.; ```      I = conj(y)' * y ```where `I` is the identity matrix with the same number of columns as y.

Example
If you enter ```      x = { [1 , 1 , 1], [1 , 2 , 3] }      y = null(x)      y ``` O-Matrix will reply ```      {      0.408248      -0.816497      0.408248      } ``` Continuing with ```      y' * y ``` results in ```      1 ``` and ```      x * y ``` results in ```      {      0      0      } ```