Contents Previous Next Subchapters Current Chapters-> pol2asc polval polyval polyvalm poladd polmul polcomp polder zero2pol roots poly pol2zero polcheb polyreduce mlmode_conv deconv residue compan monomial Parent Chapters-> Omatrix6 polynomial pol2zero Search Tools-> contents reference index search

Using Laguerre's Method to Find The Roots of a Polynomial
 Syntax `pol2zero(`p`)` See Also polval , pol2asc

Description
Returns a complex column vector that contains the roots of the polynomial corresponding to the real, double-precision or complex column vector p. If v is a column vector of length n the corresponding polynomial `v[x]` is ```                       1        2              n-1      v[x] = v  +  v  x  +  v  x   + ... + v  x              1     2        3              n ```If z is the return value, it has one fewer elements than p and `p[x]` evaluated at `x = z(i)` is zero for each `i`.

Example
The roots of the polynomial ```       2      x  -  1 ```are -1 and +1. If you enter ```      p = {-1., 0., 1.}      pol2zero(p) ``` O-Matrix will reply ```      {      (-1, 0)      (1, 0)      } ``` or it will reply ```      {      (1, 0)      (-1, 0)      } ``` because the order of the roots is not determined.

Exceptions
If the method fails, the return value has type equal to `"novalue"`. This should be a very rare case.