Contents Previous Next Subchapters Current Chapters-> abs sqrt max pmax maxs mins conj imag sign floor ceil round roundoff mod rem colunmod unwrap factorl primes Parent Chapters-> Omatrix6 elementary algebraic unwrap Search Tools-> contents reference index search

Unwrap Angles To Absolute Angles Above Two Pie
 Syntax r` = unwrap(`a`)` r` = unwrap(`a`, `b`)` r` = unwrap(`a`, `b`, `d`)` See Also mod , colunmod

Description
Returns a double-precision matrix r with the same dimensions as x that unwraps to equivalent angles with absolute value greater than `2 pi`. ``` ```If the argument b is not present or if it is an empty matrix, the value `pi` is used in its place. If the argument b is present, it must be an integer, real or double-precision scalar greater than zero. The return value r satisfies the following properties: ```      ( R   - X   ) / (2 pi)          k     k  ```is equal to an integer and ```      | R   -  R   |  < 2 pi         k+1    k     ```furthermore ```      if X     -  X    > +b   then R    -  R     < 0          k+1      k                k+1      k      if X     -  X    < -b   then R    -  R     > 0          k+1      k                k+1      k ```where `X` and `R` depend on x and d as follows
 d x `X` `R` not present a row vector equal x equal r not present not a row vector any column of x any column of r equal 1 any value any column of x any column of r equal 2 any value any row of x any row of r

Example
If you enter ```      x = 2 * seq(5)      y = 2 * PI      x = mod(x, y)      print x ``` O-Matrix will respond ```      {      2      4      6      1.71681      3.71681      } ``` If you continue by entering ```      x = unwrap(x)       print x ``` O-Matrix will respond ```      {      2      4      6      8      10      } ```